Dynamics between native and introduced species in agroecosystems of San Pablo de Borbur: challenges and opportunities for tropical forestry
PDF (Español (España))

Keywords

tropical forestry
biodiversity indicators
specific richness
San Pablo de Borbur
Margalef
Shannon-Wiener
Simpson

How to Cite

García Carvajal, Y., & Fernández García, D. (2021). Dynamics between native and introduced species in agroecosystems of San Pablo de Borbur: challenges and opportunities for tropical forestry. Global Knowledge, 6(S3), 414-430. https://doi.org/10.70165/cglobal.v6iS3.481

Abstract

The evaluation of tree biodiversity in 12 agricultural properties in San Pablo de Borbur, Colombia, used a stratified sampling method, revealing a rich floristic composition. Thirty-one tree species belonging to 31 genera and 21 families were identified, with Fabaceae, Moraceae and Euphorbiaceae as the most representative. The application of biodiversity indices, including abundance, specific richness, Margalef, Shannon-Wiener and Simpson, provided a comprehensive view of diversity. A clustering analysis distinguished three groups of farms with similar characteristics. Cedrela odorata and Inga spectabilis stood out for their predominance in harvestable volume, with significant variability between farms, with Las Cajitas having the largest volume of C. odorata (0.201 m³). The presence of introduced species such as Pinus patula and Eucalyptus globulus, coexisting with native species, adds complexity to the agroforestry system. These findings provide valuable information on the structure and composition of tree vegetation in the region, emphasizing the importance of balancing productivity and conservation in forest management strategies. The results underscore the need for an approach that promotes species diversification, conservation of native species, and optimization of silvicultural practices to improve the sustainability and resilience of these agroforestry systems. In addition, it was noted that the coexistence of native and introduced species poses challenges and opportunities for sustainable management. Exotic species, although productive, could impact local biodiversity and ecosystem services. On the other hand, the strategic combination of native and introduced species could provide a balance between economic and ecological objectives, suggesting the importance of adaptive management that considers local conditions and long-term conservation objectives.

https://doi.org/10.70165/cglobal.v6iS3.481
PDF (Español (España))

References

Alcaldía Municipal de San Pablo de Borbur. (2020). Plan de desarrollo municipal 2020-2023. https://sanpablodeborburboyaca.micolombiadigital.gov.co/sites/sanpablodeborburboyaca/content/files/000399/19932_plan-de-desarrollo-20202023.pdf

Altieri, M. A., & Nicholls, C. I. (2004). Biodiversity and pest management in agroecosystems. Food Products Press. https://www.taylorfrancis.com/books/mono/10.1201/9781482277937/biodiversity-pest-management-agroecosystems-miguel-altieri-clara-nicholls

Armenteras, D., Espelta, J. M., Rodríguez, N., & Retana, J. (2019). Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Global Environmental Change, 54, 16-27. https://doi.org/10.1016/j.gloenvcha.2018.11.004

Bhagwat, S. A., Willis, K. J., Birks, H. J. B., & Whittaker, R. J. (2008). Agroforestry: A refuge for tropical biodiversity? Trends in Ecology & Evolution, 23(5), 261-267. https://doi.org/10.1016/j.tree.2008.01.005

Bremer, L. L., & Farley, K. A. (2010). Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation, 19(14), 3893-3915. https://doi.org/10.1007/s10531-010-9936-4

Brockerhoff, E. G., Jactel, H., Parrotta, J. A., Quine, C. P., & Sayer, J. (2008). Plantation forests and biodiversity: Oxymoron or opportunity? Biodiversity and Conservation, 17(5), 925-951. https://doi.org/10.1007/s10531-008-9380-x

Cárdenas, D., & Salinas, N. (2007). Libro rojo de plantas de Colombia. Instituto Amazónico de Investigaciones Científicas SINCHI. https://sinchi.org.co/files/publicaciones/publicaciones/pdf/LR_MADERABLES.pdf

Chazdon, R. L., & Guariguata, M. R. (2016). Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica, 48(6), 716-730. https://doi.org/10.1111/btp.12381

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M., Bongers, F., Zambrano, A. M. A., Aide, T. M., ... & Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5), e1501639. https://doi.org/10.1126/sciadv.1501639

Departamento Administrativo Nacional de Estadística (DANE). (2016). Tercer censo nacional agropecuario. https://www.dane.gov.co/files/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdf

FAO & Agencia de Desarrollo Rural (ADR). (2019). Plan integral de desarrollo agropecuario y rural con enfoque territorial - Boyacá. https://www.adr.gov.co/wp-content/uploads/2021/07/BOYACA-TOMO-1.pdf

Gentry, A. H. (1982). Patterns of neotropical plant species diversity. Evolutionary Biology, 15, 1-84. https://doi.org/10.1007/978-1-4615-6968-8_1

Gobernación de Boyacá. (2020). Plan de desarrollo departamental 2020-2023. https://www.boyaca.gov.co/wp-content/uploads/2020/06/pdd2020-2023boy.pdf

Huber, A., Iroumé, A., Mohr, C., & Frêne, C. (2010). Effect of Pinus radiata and Eucalyptus globulus plantations on water resource in the Coastal Range of Biobío region, Chile. Bosque, 31(3), 219-230. https://doi.org/10.4067/S0717-92002010000300006

Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. (2022). Biodiversidad en Boyacá: estado, tendencias y amenazas. http://repository.humboldt.org.co/handle/20.500.11761/35739

Jaimes Suárez, Y. Y., Agudelo Castañeda, G. A., Báez Daza, E. Y., Montealegre Bustos, F., Coronado Silva, R. A., Rengifo Estrada, G. A., & Rojas Molina, J. (2022). Modelo productivo para el cultivo de cacao (Theobroma cacao L.) en el departamento de Boyacá. https://doi.org/10.21930/agrosavia.model.7405590

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76(1), 1-10. https://doi.org/10.1007/s10457-009-9229-7

Kelty, M. J. (2006). The role of species mixtures in plantation forestry. Forest Ecology and Management, 233(2-3), 195-204. https://doi.org/10.1016/j.foreco.2006.05.011

Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton University Press.

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing.

Matteucci, S. D., & Colma, A. (1982). Metodología para el estudio de la vegetación. Secretaría General de la Organización de los Estados Americanos, Programa Regional de Desarrollo Científico y Tecnológico. https://www.researchgate.net/publication/44553298_Metodologia_para_el_estudio_de_la_vegetacion_por_Silvia_D_Matteucci_y_Aida_Colma

Montagnini, F., Somarriba, E., Murgueitio, E., Fassola, H., & Eibl, B. (2015). Sistemas agroforestales: Funciones productivas, socioeconómicas y ambientales. CATIE. https://cipav.org.co/wp-content/uploads/2020/08/sistemas-agroforestales-funciones-productivas-socioeconomicas-y-ambientales.pdf

Navarro-Martínez, A., Ellis, E. A., Hernández-Gómez, I., Romero-Montero, J. A., & Sánchez-Sánchez, O. (2018). Distribution and abundance of big-leaf mahogany (Swietenia macrophylla) on the Yucatan Peninsula, Mexico. Tropical Conservation Science, 11, 1940082918766875. https://doi.org/10.1177/1940082918766875

Pennington, T. D., & Revelo, N. (1997). El género Inga en el Ecuador: Morfología, distribución y usos. The Royal Botanic Gardens, Kew.

Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences, 107(13), 5786-5791. https://doi.org/10.1073/pnas.0905455107

Piotto, D., Craven, D., Montagnini, F., & Alice, F. (2010). Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New Forests, 39(3), 369-385. https://doi.org/bxk8xf

Poorter, L., et al. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211-214. https://doi.org/f79vmf

Rist, L., Shanley, P., Sunderland, T., Sheil, D., Ndoye, O., Liswanti, N., & Tieguhong, J. (2012). The impacts of selective logging on non-timber forest products of livelihood importance. Forest Ecology and Management, 268, 57-69. https://doi.org/10.1016/j.foreco.2011.04.037

Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31(1), 67-80. https://doi.org/10.1016/j.tree.2015.11.005

The Plant List. (2013). Version 1.1. http://www.theplantlist.org/ (accessed 1st January 2021).

Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., ... & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53-59. https://doi.org/10.1016/j.biocon.2012.01.068

Universidad Nacional de Colombia. (2023). Herbario Nacional Colombiano (COL). Instituto de Ciencias Naturales. http://www.biovirtual.unal.edu.co/es/colecciones/search/plants/

Wood, S. A., Karp, D. S., DeClerck, F., Kremen, C., Naeem, S., & Palm, C. A. (2015). Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends in Ecology & Evolution, 30(9), 531-539. https://doi.org/10.1016/j.tree.2015.06.013

Downloads

Download data is not yet available.